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Abstract The echo effect in self-excited oscillior m y s  and in a Josephson junction m a y  
has been theoretically investigated. The required parameters of the Josephson m a y  and the 
limiting time due to the influence of thermal noise have been estimated. 

1. Introduction 

It is well known that an echo effect can be found in different physical systems. This effect 
manifests itself through a delayed response of the system influenced by two external pulses. 
For instance, for a spin system two pulses of external radiation at a frequency close to the 
resonance one give rise to a pulse of spontaneous spin radiation. Since 1950 when this 
effect was &covered in a spin system by Hahn [I], a @eat variety of echo effects have 
become known-for example. the echo in plasma [2], the cyclotron echo 131 and the photon 
echo [4]. Recently this effect has been discovered in quantum systems [SI. It is inherent 
in such physical systems where an observable macroscopic response arises from a sum of 
many independent contributions from different ‘particles’ (molecules, oscillators, spins, etc) 
and where damping of the macroscopic response, also refened to as collisionless damping, 
occurs through phase scattering [7, 61. but not through true thermodynamic damping.  since^ 
individual ‘particles’ store the information about their initial phases, by affecting this system 
via some external action, it is possible to return the system to a state close to the initial 
one, when the macroscopic response existed, and to have an echo response. 

In this paper we would like to focus on another set of systems which can be classified 
as the systems with phase memory-and, therefore, as will be shown, could demonstrate 
an echo effect. The systems which we intend to discuss are arrays of Josephson junctions 
which have been widely investigated theoretically [8] and experimentally [9, 10, 111. From 
the general dynamics point of view a Josephson junction array is a set of self-excited 
oscillators and, therefore, the echo effect may be found in sets of self-excited oscillators of 
any physical origin. In the absence of thermal noise self-excited oscillators have an infinite 
phase memory time and, therefore, the echo effect can probably be observed easily. 

This paper is devoted to the investigation of the echo effect in Josephson junction arrays 
and in arrays of self-excited oscillators. 

We intend to demonstrate that an echo effect can occur in any system consisting of 
noninteracting self-excited oscillators, if changes in the phases of these oscillators under the 
action of an external pulse depend on the oscillator phases. In order to demonstrate this, 
the echo effect has been considered in general terms in section 2 for the simplest system of 
noninteracting self-excited oscillators without noise. In section 3 using the results obtained 
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we investigate the echo effect in a Josephson array in a resistive state. The problem 
of Josephson junction dynamics is too complicated to solve analytically, if we take into 
account thermal noise and mutual interaction between the junctions; but for the realistic 
parameters discussed in section 3 we can neglect the mutual interaction. Thc influence of 
a weak thermal noise during the external pulse can be also neglected because this pulse 
is supposed to be short. The influence of the noise at other times leads only to a loss of 
phase memory, so the echo effect can be observed only at finite times. To avoid technical 
difficulties we first consider the pure dynamical problem and demonstrate the echo effect 
in the Josephson junction array without noise. In the next section we estimate the influence 
of a thermal noise and find out the times for which the echo effect can be observed. In the 
last section we briefly summarize the main results obtained in the paper. 
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2. General considerations 

To demonstrate the existence of an echo effect in Josephson arrays and arrays of self-excited 
oscillators we assume that we have a set of independent self-excited oscillators making 
quasihamonic oscillations at close frequencies. To describe the collective dynamics of these 
oscillators let us introduce a distribution function of oscillators of frequency w and phase 
*, f(*, w ,  t ) .  This distribution function is normalized to satisfy the following relation: 

f(w, 1cr) dw d* = 1. (1) 

Sometimes it is useful to define a new variable A, the, deviation of,frequency A = w - 6, 
where 0 is the average frequency of the array: 

6 = LI [ Of (0, $) W dw (2) 

and the array will be characterized by the distribution function f(A, +, t ) .  Using this 
function we can find any averaged physical quantity-for example, we can find the array 
radiation intensity P(r ) ,  which will demonstrate the echo behaviour: 

Here N is the number of oscillators in the array. The current phase II, in the absence of any 
external influence is determined by the relation + = q0 + At which is the characteristic 
equation for the following kinetic equation, which the distribution function f ( A ,  p) in the 
absence of noise obeys: 

The solution of this equation has. the form 

f ( A 9  r )  = fo(A, 1cr - A 0  (5)  
wzhere fo = f(t = 0) represents the initial condition for equation (4). Using these relations 
we could rewrite the expression (3) for radiated power of the array of free (unaffected by 
external radiation and not mutually interacting) self-excited oscillators as 
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Figure 1. The dynamics of the relative phase difference is shown. At the time t ,= 11 all 
oscillators are in phase. After that. until t = t2. phase scattering laka  place During the time 
mge tz c f c ti a second pulse affects the system; 1; = rz + 9 where r2 is duration of the 
second pulse. At the time t3 = 212 + q - t i  the system has its coherence restored. 

Now we consider qualitatively the problem of an echo arising in an array of independent 
self-excited oscillators. To demonstrate the reversibility in this:system we suppose that 
oscillators in the n a y  are free all the time except for in two short intervals (tl - q ,  t i )  and 
(fz, t Z + q ) ,  during which two pulses of external radiation with durations r , ,  q, respectively, 
affect the m y .  Schematically this situation is shown in figure 1. In this figure the first pulse 
makes all the oscillators in phase. After that phase scattering takes place and the macroscopic 
response reduces until the time t = tz  is reduced. The second pulse changes the relative 
phases Q of the oscillators so that for (n - l)rr < Q(just before the pulse) e (n  + l)n we 
have 

Y(straight after the pulse) = 2na - Y(just before the pulse) 

where n is an integer. Due to this phase correction, at the time t3 = 2tz + TZ - tI all 
oscillators will be in phase again, which gives rise to an echo pulse. The general case is 
considered analytically below. 

Suppose that at the initial moment the system is in a state with the following distribution 
function: 

where f (A) is the frequency distribution function of oscillators. We can take this, for 
example, in the form 

For this kind of distribution the macroscopic response is zero due to a uniform distribution 
of phase. It is easy to see that this distribution will remain unchanged up to t l ,  since it 
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satisfies the kinetic equation (4). The effect of external pulse action on each oscillator in 
the array can be described in terms of the mapping 
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$(just before the pulse) +. $(straight after the pulse) 

which, in each particular case, should be defined from the dynamical equations describing 
the behaviour of the self-excited oscillator under external influence. In this section we will 
assume this mapping to be a known function and denote it as $(tl + 71) = @l(@(f l ) )  for 
the first pulse and $(t2 + 72)  = q?z($(tz))  for the second one. Note that these functions 
are periodic with a period 21. Now, using the functions introduced, we can write the 
dependence of the current phase on time for each oscillator in the form 

$0 + At 
@I($(II)) + AU -?I) 

for t < t ]  
for tl c t c tz 1 @z($(~z)) + A(r - 22) for f =- tz .  

Here, assuming the duration of pulses to be small enough that the conditions Aq.2 << x 
are satisfied for every oscillator, we consider the times f l .2  and tl.2 + t1.2 to be equal. 

Since the phase distribution function of oscillators (7) does not depend on time until 
the time 21. and hence we have f (A,  $0) = f ( A ,  $I), where $1 = $( t i ) ,  we can assume 
that tl = 0, or, in other words, average over instead of $0. Thus, in order to obtain the 
intensity of radiation after the second pulse, we should calculate the integral that follows 
from (6): 

@(t )  = 

where we have introduced a new variable T = r2 - t ]  and changed the time origin via 
f = t - t2. Since O2 is a periodic function of its argument (and so is @I), we can expand 
ei'I('l(*l)+*') into a Fourier series: 

(9) 
m 

e 1 0 2 ( 0 i ( h ) + A 7 )  = cldl(Or(Lh)+AT), 

I=- 

Using this expansion we can represent the array radiation intensity as 

which shows that the response of an array of self-excited oscillators to two pulses is a series 
of pulses of similar shape, occurring at times t x (1 - l )T ,  for 1 < -1. The pulses have 
magnitudes 

I J-n I 
and their shape is determined by the second integral in (10). 

the echo effect in a Josephson junction array affected by external microwave radiation. 

3. The echo effect in a Josephson array 

In this section we apply the general theory developed above to investigation of an echo 
effect in Josephson junction arrays. Here we d o  not take into account the noise in the 
system, and we solve a purely dynamical problem. 

In the next section, using the results obtained above we consider a particular case of 
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Because all the distinctive features of this case lie in the functions @ introduced in the 
previous section, which describe the mapping of the phase @ before the external pulse into 
the phase $ straight after the pulse, $ = a($), all we need to do is to determine the 
particular form of this mapping function. 

1 2 3 N 

Figure 2. The Josephson junction ( I - N )  series army driven by DC and AC voltnge soumes 
through the load R. 

Now let us consider a simple example of a one-dimensional Josephson array-a set of 
series-connected junctions with an external load (see figure 2)-and suppose for simplicity 
that all junctions have equal critical current IC and capacitance C but different normal 
resistances ri. Within the framework of the resistive shunted junction (RSJ) model such an 
array can be described by equations which in dimensionless variables have the following 
form: 

where pi is the Josephson phase difference of the ith junction, IO = EjRI ,  and 
s ( t )  = U/RZ, are the dimensionless bias direct current and the external pulse current, 
respectively, parameters yi = f / r i  represent normal resistance of the ith junction, and F is 
the averaged resistance defined by relation 7' = ( l j r ) ,  so )? = 1. The coefficient (Y = f / R  
determines the strength of the interaction between junctions through the common load, R is 
the resistance of the load, = 2rrF2tCC/@0 is the McCumber parameter (Q0 = hj2e is the 
quantum of magnetic flux), and the time current and voltage are normalized to an average 
'gap' frequency Q, = 2nfl,j@0, with critical currents I, and FI,, respectively. 

When the current in an array, IO, exceeds the critical current of the junctions, all junctions 
in the array get into a resistive state and oscillate with a frequency wc = q(1) a Io/y; . In 
this scheme the power dissipated in the load resistor or the power of radiation, if the load 
is a matched antenna, is equal to 

where I- is the amplitude of the alternating current through the array, and f,b- is the 
amplitude of the alternating voltage on an individual junction. 
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Let us introduce the array parameters at fixed lo-the average frequency i3 and 
dissipation constant p, and spread of frequency A.o: 

N N N 

7 G = C w i / N  At = C(W~ - 0 ) ' f N .  (13) 

To demonstrate the possibility of an echo effect occurring in Josephson arrays and to obtain 
an analytical solution of the problem, we assume that the following conditions are satisfied: 

;=I ;=I ;=I 

ClN << Ao Ao/O << 1 io >> 1. 03=i 
This assumption allows us to neglect the mutual interaction between junctions in the array 
and apply a perturbation method. It should be noted here that, if the first of conditions (14) 
is satisfied, then corrections of oscillator phases are much smaller than unity at all times 
and, hence, we can compretely neglect the mutual interaction between the junctions. 

Now, following the prescriptions  of the general theory, we introduce the phase and 
frequency distribution function f ( A , Q )  of junctions in the array, where A = w - 6 is 
the frequency deviation from the averaged value G, and 1/1 is the slow phase of oscillation 
introduced by the relation 

'p=i3r+@+Imbe'" .  (15) 
Here 'p is the Josephson phase difference of the individual junction which obeys equation 
(II) ,  and b is the complex amplitude of the phase oscillations. Now, in order to obtain 
explicit relations for the echo response, assume that external pulses have the form 

s ( t )  =Ima(r)e'"' = A(t)s in(Gr+~(r))  (16) 
where U = Ae'x is the complex amplitude of external radiation, which is assumed smooth 
enough on the scale of w-I that Iu[ << wlul. If, besides, the spread of frequency in the 
array is rather small, A0 < 6, the phase @ obeys the following reduced equation [12]: 

(17) S$ + ~4 + QZ(r)sin(l/l + X I  f x) = y A .  

Here we denote J I ( B )  ( 4  is the first-order Bessel function) as 02(t), where b = Be'Xl is 
the complex amplitude of an alternating phase defined above (15) which is expressed as 

U 
b =  -pi?+ i y6 .  

We will need the explicit forms for B and XI:  

Note that the coefficient y relates to the oscillation frequency via A = l ( 1  fy - 1). We 
recall that in our units 7 = 1. If the external pulse duration is large enough, then, as can be 
seen from (17), synchronization of Josephson junctions by external radiation can take place. 
This leads to formation of Shapiro steps in the current-voltage characteristic of the junction 
[13]. But a short pulse only changes the phase of the junction and this phase correction can 
cause the echo effect. 

After the pulse, when O(r) = 0, equation (17) takes the form 

S$ + Y 4  = y A  (19) 
whose solution quickly-in a time of~order 0 (the distance between pulses r ,  is assumed to 
be much larger than p)-tends to the solution of the reduced equation 4 = A which is the 
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characteristic equation for the free kinetic equation (4) introduced in section 2. Therefore, 
in order to get the mapping produced by the external pulse we ought to take into account 
not only the dynamics within the pulse, described by (17), but also the relaxation process 
straight after the pulse, described by (19). 

Equation (17) is too complicated to solve analytically, so to obtain the mapping function 
a computer simulation and qualitative investigation is required. It can be solved easily in two 
limiting cases. The first one is the case of rather strong and long external pulses such that 
8' > yA0 and r-] << ( y /2 ) (1  - J1 - 4pZ8z/y2) ,  which make all junctions synchronous 
with the external radiation. The second limiting case is the case of weak external influence, 
where we can determine a pulse-induced change of phase using the perturbation theory. 

Now consider the first case of synchronizing the pulse and obtaining the mapping. If 
8' >> yA0. we can expand the 'sines' in equation (17) into a power series and, by taking 
into account only the linear tem,  derive the linear equation 

L@ + Y$ + Q2(@ + X I  + X) = Y A  (20) 

which is easy to solve. It should be remembered that we are solving the equation for an 
individual junction. Its solution is 

X I  + x + @ - ~ A / Q '  = ~m(cleY" + c2en') $ = ~m{c~y~eY" +c2y2eni] (21) 

where yl.2 = -(y/2)(1 & J1 - 4p2Q2/y2).'Since just before the pulse $ = A, relations 
(21) will determine @, $ straight after the pulse, if we put I = r in them. In other words, 
these relations represent the mapping in the paramet& fom. Besides this, we need to 
determine a phase change after the pulse within the relaxation time rrer Y ply. The phase 
dynamics during this time obeys the equation 

B $ +  y $  = y A  

from which we get 

If ( y / B ) t  >> 1, we obtain 

which shows that the dynamics during the relaxation time results only in the addition of the 
term (6 - A)/y to the mapping determined by the dynamics through the pulse duration. 
Thus. equations (21) and (3) yield jointly the full mapping 

@VI + r )  = W@.(~I))  

needed for the calculations. If the pulse is long enough, such that min{yl,z] >> 1, all phases 
become synchronous, which corresponds to the following mapping: 

@(after pulse) = -(,yl(A) + x ) .  (24) 

The other limiting case allowing us to derive a simple expression for the mapping 
function is the case of a weak and short pulse, such that 
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If these conditions are satisfied, we can integrate equation (17) over the unperturbed 
trajectory * = Af, which yields 

f izr . $@ + r )  = A - - sm($(t) + XI + x )  (26) 

Further, using expression (3) for a phase change during the relaxation time, we find finally 
the expression for the mapping produced by the weak pulse: 

B 
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$0 f r )  = $0) +- AT. 
B 

fi2r . 
WI + 1 + rred = WI) + A(r  + Trzd - - s l n ( W  + X I  + XI. (27) 

The second term simply reflects the phase accumulating due to the unperturbed dynamics, 
and the last one is the perturbation contributed by the extemal pulse. 

Now, since we know the explicit form of the mapping, we can calculate the echo 
response using the expression derived in section 2. Suppose that our system is affected by 
two pulses. Assume further that the first one makes all junctions synchronous; then from 
(24) we obtain the distribution function in the phase: 

(28) 

where f (A)  is the frequency distribution function of the junctions. If L, >> A0 then this 
function can be expressed in the explicit form 

d A  
f (@) = / f I(A(xi)l ;i;;; a(@ - x - xi) dxi 

Po) = N Z  d@ dA fo(A, @ --At)e'" 
--m i = N 2  7 d e  dA fo(A. $o)ei~u+At 

--m 
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The first term in the exponent reflects a power decrease caused by the initial phase mismatch 
due to the dependency of the synchronization phase on the individual junction parameters; 
the second one is related to 'phase scattering' due to the spread in frequency of the self- 
excited oscillators. 

Now suppose that at the time t = T our system is affected by the second pulse, which is 
rather short and weak, such that the conditions (25) are satisfied and the mapping function 
has the form (27). Using the general representation of radiated power (8) we obtain the 
following expression: 

~ ~ 

Further, expanding eio(*) into a Fourier series: 

(here the J I  are the Bessel functions, and we denote the parameter of the mapping by 
D = Q Z y / 7 )  and taking the integral we obtain the final expression for the echo response 
to the second pulse: 

2 

= N 2  JI exp(-ZA;[T(l - I )  + t - a x ~ / a A I '  I,, I 
-2A;(axl/aA)2(1 - 112) .  (33) 

Here, for calculations, we used the explicit form (29) for the distribution function and shifted 
the time origin to the end of the second pulse. We can see that a response of the Josephson 
array to the second pulse is essentially a sequence of echo pulses, taking placaat the times 
t = axi/aA+T(Z- I), their shapes being determined by thefrequency distribution function 
of the junction. The value 

2 

~2 J , (D)  e - z ~ ~ ( a ~ l i ; ~ ~ ) z ( ~ - ~ ) z  IL I 
is the amplitude of Ith echo pulse. A qualitative picture demonstrating the sequence of echo 
pulses is given in figure 3. 

Now, using the formulas obtained above we can make some estimates of the amplitude 
and duration of echo pulses and discuss the possibility of experimental observation of the 
echo. For a typical 1D Josephson junction array [ l l ]  consisting of N is: 500 junctions with 
r = 0.4 Q and It  ii: 3 mA, connected to a matched load for the maximum output power 
we will have the expression 

pmUx ii: o.~N~(I , )*  x 0.2 mW. 

For the pulse duration we have the estimate 7 is: A;', which for the typical spread 
of oscillation frequency in the array (of order 1%) and for the averaged frequency 
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Figure 3. The power of mdiation of the Josephson junction m a y  as a function of time. At the 
time I = 0 all junctions are synchronized by the first long pulse. AFer this time phase scattering 
takes place and the power of thr radiation decreases. At the time f = tl, the second pulse affects 
the system and. because of this, at times 12 = T t i l x i / ; l A . f ~  = ZT t ilxi/ilA (and so on) 
echo pulses arise. 

(6?/2x i;: 100 GHz) is about r % 1 ns. Such pulses are quite easy to observe unless 
thermal fluctuations destroy the phase coherency. So now we should estimate the role of 
thermal noise. 

4. The influence of thermal noise 

To consider the influence of thermal fluctuations on the echo effect let us suppose that our 
system is affected by an external fluctuation current I,- with a zero mean value (I,-)' = 0 
and a correlation function 

4irkT 
( I , - ( f ) I j ( f  -+ r ) )  = --S(r). 

@cl I C  

Here we use the dimensionless variables I f  = I j / I C ,  k is the Boltzmann constant, T is the 
temperature, 1, is the critical current, r = (r;'}-' is the averaged normal resistance, and r 
is the dimensionless time normalized, as in section 1, to S2 = 2irrIcj40, where 40 is the 
flux quantum. The equation For a stochastic Josephson phase of an indivi'dual junction with 
averaged parameters has the form 

whence, using the standard method (see, for example, [14] ) ,  we will have an estimate for 
the mean square value of the phase fluctuation characterizing a phase scattering rate. We 
give it in dimension variables: 

,9@ + 4 + sinp = I + I, (34) 

The echo effect can be observed only if the time interval between the first and the echo 
pulses does not exceed the phase scattering time trim when (p - sx 2z, so the limiting 
time of the echo effect trim is defined by the following expression: 

m? 
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Using the typical values of parameters of a low-temperature Josephson junction: r - 0.1- 
1 S2, T - 4 K, we can estimate for q j m  

qi,  2-20 ns 

which is a rather limiting condition for observing an echo effect in Josephson arrays 
experimentally. Because both the intensity of the thermal noise and the normal conductivity 
of the Josephson junction depend on temperature, there is an optimal temperature at which 
the echo effect can be observed at the longest. To find the optimal temperature one has 
to find the global minimum of the function r ( T ) T  ( r (T)  is the dependence of the junction 
normal conductivity on the temperature T). It is Seen that the optimal temperature must 
not be zero. Therefore, by varying the temperature one can widen the time interval within 
which the echo effect exists. 

5. Summary and discussion 

In this paper we have shown that an echo effect can be found in systems consisting of 
self-excited oscillators. It is shown in section 2 that if the action of an external signal 
on oscillator phases depends on these phases, a pair of such pulses can lead to an echo 
response of the oscillator system. An example of such a signal is a synchronization signal 
for a self-excited oscillator system. In the general case the echo response has a complex 
form and may consist of a number of pulses. The dependence of a pulse amplitude on the 
number of pulses can be nonmonotonic, but the amplitude tends to zero when this number 
tends to infinity. 

The role of mutual interaction between self-excited oscillators is very important. 
For example, mutual phase locking causes the echo effect to disappear because neither 
divergence nor convergence of oscillator phases can exist in  this system. 

The Josephson junction array is considered as a system capable.of exhibiting an echo 
effect without noise. We show that an echo effect really does occur in this system under 
certain conditions, and that it shows up as an infinite series of pulses. In  fact, the pulse 
amplitude tends to zero when the number of pulses tends to infinity, and only a finite number 
may be observable. The amplitude of the pulses is a nonmonotonic function of number, 
so the ainplitude of an earlier echo pulse is not always larger than that of the next one: 
some pukes (including the first one) can even have zero amplitude. The amplitude and 
shape of the echo signals are obtained. The amplitudes of the echo signals depend on the 
amplitude and duration of the second external signal; the shapes of the echo signals depend 
on the frequency distribution function of a Josephson junction at a fixed bias current. This 
result is obtained for a large range of conditions hut will be qualitatively the same even 
when the conditions (except for the weak-interconnection condition) mentioned above are 
not satisfied. 

The influence of a thermal delta-correlated classical noise is estimated and , t h e  time at 
which the echo effect observation is possible is found. We show that all the necessary 
conditions can be satisfied. 

It is important to note that for a self-excited oscillator system the thermal noise is 
the only thing that can limit a maximum time distance between external signals in the 
experimental observation of an echo effect. For a conservative oscillator system there is 
another time limit: the energy dissipation time in, the system. 
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